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ABSTRACT 

We give some est imates for how well the normalized trace functional exposes 
the identity map on a finite-dimensional space. 

Introduction 

The identity operator on an n-dimensional space E is an exposed point of the 

unit ball of L(E) .  The topic of this paper is estimates for the "exposing 

modulus" 6(t); here 3(t) (Definition 1.1) is the best function with the property 

that Ilull_-<l and trace(u)= > n [ 1 - 8 ( t ) ]  imply II1 -ull  t. Our results are 
divided into three sections; only real spaces are considered. 

Section 1 establishes the estimate t2/2n 2 <= 8(t) <= t for any E. An application is 

that a space with 1-summing constant very close to n must have projection 

constant close to one. 

Section 2 describes the spaces E for which 6(t) is asymptotically as large as 

possible, i.e., 8(0  >- ct. E has this property if[ the group of isometries of E is 

finite. Another (and equivalent) property these spaces enjoy is that 

l l(lz + w) = n +trace(w) 

for any map w on E with integral norm l~(w) sufficiently small. Finally in section 

3 it is shown that, up to constants, 6(t) behaves like either t or t 2 when E has a 

1-unconditional basis. 
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Preliminaries 

For E a finite-dimensional real normed space, L(E)  denotes the space of 

linear maps on E under  operator  norm. In this finite-dimensional setting the 

trace of u E L(E)  is meaningful and is written tr(u). For x E E and functional 

x '  E E ' ,  x ' @  x is the map taking y to (y, x')x. The dual of L(E),  n = dim E < o0, 

can be described using the integral norm. For w: E ~ E define 

l , ( w ) = i n f  ~ [Ix',ll IIx, ll, 
i<~m 

where the infimum is taken over all representat ions w = Ei~_mx'i~xi. I(E), the 

space of linear maps on E under  the integral norm, is naturally isometric to 

L(E)' via the pairing (u, w) = tr(uw). We note that l t ( lz)  = n (cf. [4]). 

Later  some use will be made of the p-summing norms Zrp. The basic properties 

of 11, 7r~ and 7r2 may be found in Pietsch's book [9]. 

Given a basis (e,)i_<, for E, e = (el . . . . .  e , )  an n-tuple of signs and 7r a 

permutat ion of {1,2 . . . . .  n}, let g~ and g~ be the linear maps defined by 

g, (ei) = eie~ and g~ (e~) = e~<0, 1 =< i < n. The basis is 1-unconditional if each such 

g~ is an isometry; the basis is 1-symmetric if it is 1-unconditional and in addition 

each g~ is an isometry. 

Section I 

Throughout  this paper A, B and E denote  finite-dimensional real Banach 

spaces, with E having dimension n. 

DEFINITION 1.1. Let  e E A  have norm one. For each functional e ' C A '  
satisfying I1 e'[I = (e, e ' ) =  1, define two functions as follows. 

(a) For 0 =< t =-< 2, 

~(t, e') = inf{(e - x, e'): [Ix II--< 1 and lie - x II => t}. 

(b) For 0 _<- s < c¢, 

~b(s, e') = sup{He'+ x ' [ [ -  1 - (e, x'): Ilx'll =< s}. 

If the identities of e and e' are clear from the context we write 8 ( 0  and ~b(t); in 

particular, this simpler notat ion is used when e E L(E)  is the identity map and 

e ' =  n - ' l E  EL(E) ' .  Recall that e is said to be exposed by e' if [[x[[=<l and 

(x, e') = 1 must imply x = e ; and that e is strongly exposed by e' if 6(t, e') > 0 for 

all t > 0. For finite-dimensional A these two notions are equivalent.  We will say 

that e is sharply exposed by e' if there is a constant  c > 0 with 6(t, e') => ct for all t. 
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The  first lemma is similar to the duality be tween  the moduli  of convexi ty  and 

smoothness  for  a Banach  space X (Lindenstrauss,  [8]). 

LEMMA 1.Z. Let  e ~ A and e' E A '  be given points with lie II = Ile'll = (e, e') = 

1. 

(1) For all s and  t, 6 ( t , e ' ) + c b ( s , e  ) = s t .  

(2) For all s, 

~b(s) = sup{st - 6 ( 0 : 0  _-< t =< 2 and 6 ( 0  <= 2s}. 

PROOF. Given t let x be any point  with Ilxll=<l and [le-xll>-_t. Choose  

x '  E A '  with II x'll = 1 and [1 e - x II = (x - e, x').  Then  for  any s 

c k ( s ) + ( e - x , e  ~=~x ,e  s x ' ) - l - ( e ,  s x ' ) + ( e - x , e ' ) > s t .  

Taking the infimum gives (1) and one  inequali ty in (2). For  the o ther  inequali ty 

suppose IIx'll=<s. Find x C A  with Ilxll = 1, I l e ' + x ' l l = ( x , e ' + x ' )  and set t =  

lie - xl l .  T h e n  

Ile' + x ' l l -  a - ( e , x ' ) = ( x  - e , x ' ) - ( e  - x ,e ' )  

=<Ix - e IIs - ~(lle - x II) = st - 6 ( t )  

6(t)=<(e - x , x ' ) =  1 - ( x , e '  + x ' ) + ( x , x ' )  

=< Ile'll - l ie '+ x'll + s <= 2s. [] 

THEOREM 1.3. For each u @ L ( E )  and real r 

/,(1E - ru)2=< n~(1 + rZllu 112)-Znr t r(u).  

PROOF. It is enough to show the inequali ty for  r = 1. Let  II ]lz be the inner 

p roduc t  norm on E determining the ellipsoid of maximum volume conta ined in 

the closed unit ball of E. Wri te  H for E under  II 112 and v: H ~ E ,  w: E ~ H  

for  the inclusions. By John ' s  T h e o r e m  [6] or  its dual version (cf. [7]), 7rz(w) _-< n x/2 

and of course II v II =< 1. Wri te  q) = wuv. The  Z-summing norm ¢r2 coincides with 

the Hi lbe r t -Schmid t  norm for  maps on H ;  thus 

7 r d l ,  - 402 = tr[(1H - ~b)(1, - 4~*)] 

= n + ~rz(~b)z- Z tr(~b) 

=< n + II u H~II v II 2 7rz(w) 2 - Z t r (u)  

= n(1  + llu I1=)- 2 tr(u)- 

and fur ther  
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But then 

l,(l~ - u) 2 = l,(v(1E -- d~)w) 2 

I1o 112 2(1. -  )2 2(wy 

=< n:( 1 + II u II 2) - 2n tr(u). [ ]  

The inequality of Theorem 1.3 for r = 1 shows that l~ @ L(E)  is exposed by 

n-~l~ E L(E) ' ,  as is shown in Garling [3]. A quantification of this is 

COROLLARY 1.4. Let E be n-dimensional. 
(1) for 0=<t=<2, t2[2n2<=6(t)<-t. 
(2) For O<=s <_2/n 2, O<=49(s)<=(sn)2/2. 

PROOF. The lower bound in (1) follows from the theorem with r = 1, together 

with the fact that I1 v II <= l,(v) for any map v. For the upper bound in (1) simply 

take u = (1 - t) le ; II u II =< 1, ]l 1~ - u II = t and (1E - u, n-~lE) = t. Assertion (2) 

follows from (1) and Lemma 1.2. [] 

REMARKS. (a) As functions of t both bounds in part (1) can be asymptotically 

attained. For example, one may check that 

t~/2n<-_g(t)<-_t2/n for E = IL and t < 2  m 

and 

t/2n <= 6(0<= tin for E = 1~. 

(b) The constant in the upper estimates for g(t)  can be improved if E has a 

1-unconditional basis. In fact, let X be a space with 1-unconditional basis (bi) 

(finite or infinite) and let (b'~) be the sequence of coefficient functionals. 

Let  w E L ( X ) '  be any functional norming lx.  For each t E (0 ,2 )  and k, let 

uk = l x - t b ' k @ b ~ ;  Ilukl{<=l and I I1×-  uk[l=> t, so 

m6(t, w)_- < ~ ]  (1 - uk, w) 
k < m  

whenever m _-< dim X. This shows that 6(t, w) <-_ t/n if n = dim X < ~, and that 

Ix is not strongly exposed if dim X = ~. In the infinite-dimensional case one may 

- v ~ 2-kb, ,~ b~ exposes lx.  check that w --,-k=l ~ 

The projection constant and 1-summing constant of E are denoted by y=(E) 
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and ~,(E),  respectively. The facts needed here relating to the y=-norm and 

7r,-norm may be found in Garling-Gordon [4] and Pietsch [9]. 

Let E be a space of dimension n with 7rl(E)> (n 2 -  1) 1/2. COROLLARY 1.5. 

Then 

T~(E){1 - [ n  2 -  ¢r,(EY] v2} =< n-1~TI(E) • 

PROOF. By Pietsch duality [9] there is a map u: E---~E with y . (u)  = 1 and 

~r,(E) = tr(u). Then II u li 1. Applying Theorem 1.3 with r = n -1 tr(u), 

[{1~ - r u  [[2~ 11(1  E _ ru)2<= n2(1 _ r2). 

Since the last term is less than 1, ru is invertible and 

{1 - n(1 - r2)l/2}ll(ru)-lll <= 1. 

Also 

~/~(E) = ~/~(UU -1) ~ 'y~tU)] I U -1 [I = [I u-1 II, 

and combining the last two displayed inequalities establishes the corollary. [] 

REMARKS, (a) Deschaseaux [2] and later Garling [3] showed that ¢r l (E)= n 

implies y=(E)=  1; the corollary contains this result. 
(b) It is not true that (dim E.)-1vrl(E.) ---> 1 implies T=(E.)---> 1. For example, if 

E,  = (l~ @ IU2)~, then 

n >_- 7rl(E,,) >_ - 7rl(l"~ -2) = n - 2  

but 

=> - -  

Section 2 

Here our aim is to describe the spaces E for which 1~ E L ( E )  is sharply 

exposed. 
An element w ~ L(E) '  with ll(w) = (1E, w) = 1 is called a state, and S will 

denote the state space (= set of all states) in L(E) ' .  More generally for a 

subspace A C L(E) ,  define 

S ( A ) = { w [ A :  w E S } C A ' .  

The numerical range of u E L(E)  is the set 

NR(u)  = {(u, w): w E S} C R. 



Vol. 51, 1985 FINITE RANK OPERATORS 267 

The basic facts needed here about numerical ranges of operators may be found 

in Bonsall-Duncan [1]. 

THEOREM 2.1. For an n-dimensional space E the following are equivalent. 

(1) There is a constant c > 0 with the property that flu II <= 1 and n -~ t r ( u ) >  

1 - ct implies [I1E - u II ~ t. 

(2) There is a constant c > 0 with the property that if l ,(w ) <= c then l~(l~ + w) = 

n + tr(w). 

(3) The group of isometries of  E is finite. 

THEOREM 2.2. L e t A  b e a s u b s p a c e o f L ( E ) c o n t a i n i n g  1E, where d i m E  < ~ .  

Then 1~ C A is sharply exposed in A iff A contains no non-zero operator with 

numerical range {0}. 

REMARKS. (a) It should be emphasized that all spaces here are real. Theorem 

2.1 fails for complex spaces. For example, let (e~) be the unit vector basis of 

complex l~,, co a primitive nth root of unity and w be the diagonal map 

w (ek) = co kek ; w has trace zero and l,(1 + tw) = Zk <_, I1 + tco k I> n for all t fi 0. 

(b) Let B be a real, finite-dimensional normed algebra with identity e, and let 

R :B--->L(B)  be the representation R , ( b ) =  ab. Applying Theorem 2.2 to 

A = R ( B )  shows that e is sharply exposed iff B has no non-zero element with 

numerical range zero. 

The proofs of the theorems will be divided into several lemmas. Additionally, 

frequent use will be made of the following theorem of Lumer and Phillips (cf. [1], 

page 30). 

LUMER-PHILLIPS THEOREM. Let u E L ( X ) .  N R ( u ) C ( - ~ , 0 ]  if and only if 

exp(tu) is a contraction for all t >= O. 

Below A denotes a subspace of L ( E )  containing the identity map. It is 

convenient to write e for 1E and e' for the sate n - l l e  [A. 

LEMMA 2.3. I f  F is a face of S ( A  ) containing e', then F = S ( A  ). 

PROOF. The basic case is A = L ( E ) .  To get a contradiction, suppose F C S 

contains e' and that F f i  S. By separation arguments (cf. [5]) there is a v E L ( E )  

and a real a so that (a) v IS--< a, (b) v I F =  a, and (c) (V, Wo)< a for some 

wo E S. Let u = v - ae ; (a) implies NR(u)  C ( - ~, 0] and by the Lumer-Phillips 

Theorem [lexp(tu)[[ _- 1, t > 0. By (b) tr(u) = n(u, e') = 0, and so 

det(exp(tu)) = exp(t tr(u)) = 1, t => O. 
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Now a volume argument shows that exp(tu) maps the closed unit ball of E onto 

itself, i.e. exp(tu) is an isometry. Then 

1 = [lexp(tu) -111 = I[exp(- tu)[[, t => 0, 

so again by the Lumer-Phillips Theorem N R ( -  u )C  ( -  0% 0], contradicting (c). 

More generally let F C S be a face containing e'IA. 

M = { w  ~S:  w Ia ~F}  

is a face of S containing e', and so M = S. [] 

DEFINITION 2.4. Let A be a 

(1) V(A) denotes the set of 

perty: there is an a > 0  with lie 

(2) ~ ( a ) = { u  C A :  N R ( u ) =  

For A = L(E) we write simply 

the Lie Algebra of E. Note that 

e' E V(A). 

subspace of L(E) containing e. 

functionals w E A '  having the following pro- 

'+ tw Ila' = 1 + tie, w) whenever I tl --< a .  

{0)}. 
V and ~ ;  following Rosenthal [12], 5f is called 

both V(A) and ~ ( A )  are vector spaces, with 

In the lemmas which follow II I[ denotes the dual norm on A'.  

LEMMA 2.5. V(A)=spanS(A)  and the annihilator of V(A) is V(A) ° =  

~(A).  

"PROOF. The main point is that S ( A ) C  V(A). To see this let F =  

S(A)A  V(A). Since e '~F,  we need only show that F is a face of S(A). Let 

wl, w2 ~ S(A) and suppose the convex combination w = Awl + (1 - A)w2 ~ F. 

Since V(A) is a vector space containing e ' , e ' - w  E V(A). Thus there is an 

a > 0 with 

l ie '+ a t e ' -  w)ll= l + a(e ,e ' -  w)= 1. 

Choose v ~ (0, 1) to satisfy v - (1 - v) (1 - A)a = 0 and let b = vA (1 + A)-1. Since 

e ' +  b(e ' -  w~) = vw2 + (1 - v)[e' + a (e ' -  w)], 

Ile' + t (e ' -  wl)[[ <= l, O< t <= b. 

The last inequality holds by convexity for - 1 < t < 0 since both e'  and wi are in 

S(A). But also II e'+ t ( e ' -  w,)H => (e, e' + t ( e '  - Wl)) = 1, so wl E V(A). Simi- 

larly, w2~ V(A). This shows F is a face, so F = S(A) by Lemma 2.3 and thus 

S(A)c V(A ). 
For the other containment it is clear that ~ ( A )  is the annihilator of 

spanS(A).  Let u E ~ ( A ) .  If w E V ( A )  there is a a > 0  with 



Vol. 51, 1985 FINITE RANK OPERATORS 269 

e '+_a(e ' -  w ) ~ S ( A ) .  Then O=(u,e ' )+-a(u ,e  ' -  w) and hence 0 = ( u , e ' ) =  

(u, w). This shows 

[span S(A)]  ° = ~ ( A )  C V(A)  °, 

which completes the proof. []  

LEMMA 2.6. There is a constant a with the following property: for any 

w E V ( A )  and Itl<=allw[I, I l e ' + t w [ l = l + t ( e , w ) .  

PROOF. Let (wi),~m C V ( A )  be any normalized basis. Since all norms on the 

finite-dimensional space V ( A )  are equivalent, there is a constant c > 0 with 

~, I t~ I~  c liE, t~w, II for every choice of scalars ti. Choose a, so that lie' + tw, II = 

1 + tie, w~) whenever I tl < a~. It is easy to check that a = (min ai)/2c has the 

desired property. [] 

LEMMA 2.7. (1) I f  W E S (A) ,  a > 1 and e '+ a ( e ' -  w) ~ S (A) ,  then 

( l + a  ~)g(t)>=6(t,w), 0=<t=<2. 

(2) There is a constant b > 0  so that, for all w E S ( A  ), 

bS(t)>-_6(t,w), 0=<t=<2. 

PROOF. For (1), suppose u E A, II u il -< 1 and lie - u i] --> t. Then 

1 >-_ (u, e' + a ( e ' -  w)) = 1 - (1 + a)(e - u, e') + ace - u, w), 

o r  

(1 + a - ' ) ( e  - u, e ' )  ~ (e - u, w).  

Taking the infimum over all such u gives (1). For (2), let a be given by Lemma 

2.6. Since e', w E S(A) c V(A), pie '+ a(e'-  w)ll = 1; (2) now  fo l lows  f r o m  (1). 

PROOF OF 2.1 AND 2.2. First note the following equivalences. 

(a) 6(t)>- ct for some c iff 

(b) th(s ) - -0  for 0 <  s < c~ (by Lemma 1.2) iff 

(c) V ( A ) =  A '  (by Lemma 2.6) iff 

(d) ~ ( A ) =  V ( A )  ° --(0) (by Lemma 2.5). 

To prove Theorem 2.2 suppose e E A is sharply exposed. By Lemma 2.7(2) e 

must be sharply exposed by e'; this combined with the equivalence of (a) and (b) 

is the proof. 

Since (a), (b) and (d) are equivalent, to verify Theorem 2.1 we need only show 

that (3) is equivalent to (d). Suppose G, the group of isometrics of E, is finite, and 
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u @ ~ By the Lumer-Phillips Theorem, exp(tu) is an isometry for all t. Thus 

exp(tu) = e for small It I, and so u = 0. For the converse assume G is infinite. 

The exponential function maps L¢ onto G,,, the connected component of e E G 

(cf. Robbin [10]). Since G, is non-trivial, ~ #  (0). [] 

REMARK. The Lie algebra ~ is closed under the bracket operation [u, v] = 

uv - vu. Together with Lemma 2.5 this implies two permanence properties of V. 

Notice that tr(u[v, w]) = tr([u, v]w). Thus 

(a) if v is in the commutator of 5¢, then [v ,w]G V for all w E L ( E ) ,  and 

(b) if v E ~ t h e n [ v , w ] E V  for all w E V .  

Section 3 

Here we consider the modulus 6 ( 0  when E has special structure, either a 

1-unconditional or 1-symmetric basis. 

First, Lemma 2.7(2) shows that, up to constants, no state w exposes lz better 

than the normalized trace n-f l  E. In the unconditional basis case firmer estimates 

than Lemma 2.7 hold. 

THEOREM 3.1. Let E be an n-dimensional space and w any state. 

(t) If  E has a 1-unconditional basis then n6(t)>= 3(t, w) for all t. 

(2) If  E has a 1-symmetric basis then 3(0  -> 3(t, w) for all t. 

THEOREM 3.2. Let E be a space with 1-unconditional basis. There is a 

constant c with either 6 ( 0  >- ct for all t or 3(t)<= ct 2 for all t. 

THEOREM 3.3. Let E be an n-dimensional space with a 1-symmetric basis. 

Then either E = l~ isometrically or 1E is sharply exposed. 

PROOF OF 3.1. Fix t E (0,2), let (ei)~, be a 1-unconditional basis, (e'i)~_<, be 

the coefficient functionals and G be the group of isometries of E. First note two 

simple properties of 3: 

(a) 6(t , . ):  S--->R is concave and upper semi-continuous, and 

(b) 3 ( t , w ) =  6(t, gwg -~) for all w ~ S  and g ~ G .  

Let dg be the normalized Haar measure on G and set Wo = f gwg 'dg. Using 

(a) and (b), 

6It, w)  = f 3(t, gwg- ' )dg  <= 3(t, wo). 

The average wo is a state because t r ( w o ) = t r ( w ) = l  and l , (wo)<=ll(w)=l .  

Further, wo E Gc = the commutator of G. 
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Since the basis is 1-unconditional and wo ~ G,, w, must be a diagonal map 

w, ,=E~ ,Le '~@ei .  For each i, 0=<L _-< 1, because 

1 = tr(wo) = ~ Ai ~< E [ L  I ~< l , (w, ,) :  1. 

Let a = (n - 1 )  -t. In the notation of Lemma 2.7, 

e' + a ( e ' -  w,,) = a ~ (1 - hi) e'~@ ei 
i < n  

has integral norm a(n  - 1) = 1, and so by Lemma 2.7 

nS(t)  > 3(t, w,,) >= ~(t, w). 

In the case the basis is 1-symmetric G~ = R 1F. Thus w, = A 1E, nA = t r (w, )=  1 

and so w , =  n -~IE. []  

PROOFS OF 3.2 AND 3.3. The idea is that if l z is not sharply exposed then 

5~# (0); as mentioned above u E ~ means exp(tu) is an isometry of E for all t. 

Let ( , ) be any inner product on E invariant under every isometry of E. Note 

that u ~ ~ implies u* = - u with respect to this inner product, and that the 

basis vectors e, are orthogonal since the basis is 1-unconditional. 

Assume (et) is 1-unconditional, let u ~37  be non-zero and suppose for 

convenience that a = (u(e  O, e ' ) #  O. Let H be the group of isometries of form 

g,, where e~ = e2 = 1. The average v = IHI-'  X , ~ , g u g  ' is in the Lie algebra 5¢ 

and v = a [ e ~ @ e , - e ' t @ e 2 ]  because v * = - v  and v commutes with each 

g, E H. For each t, exp(tv) is a ]] ]1-isometry whch maps F = span(e,, e,_) onto 

itself, and is also an isometry for the Hilbertian norm lix 112 = (x, x) w-. Since the 

maps exp(tv), t ~ R ,  give all rotations on F , F  = l~ isometrically and each 

rotation ro of F extends to an isometry go of E satisfying go I span(e3, . . . ,  e,)  = 

identity. Given t, 0 <= t =< 2 '/2, choose 0 with 2 - 2 cos 0 = t:. If go is as described 

above, }lgo II : 1, 

[[ 1E - go [[ => H(I~ - go)l  FI[ = (2 - 2 cos 0) '/2 = t 

and so 

3(t)=< n - ' t r ( l e - g 0 ) =  n ' ( 2 - 2 c o s 0 ) =  t2/n. 

This proves Theorem 3.2. 

To finish the proof of 3.3, argue as above that if 3?# (0), then some map of 

form e'~@ e , -  e',@ e,, s #  t, must be in ~. But then by symmetry of the basis 

every such map lies in ~f, so 5~={u :  u * =  - u } .  It's well known that every 
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( , )-orthogonal map g has form g = e exp(u),  where u* = - u and ]el= 1. 
Then every orthogonal map is a ]1 I]-isometry of E and, since the orthogonal 
maps act transitively on the sphere {x :]lx I]2 = 1}, E = I~ isometrically. []  

REMARKS. (a) For any space E the space V has dimension at least n (n + 1)/2. 
As above, each element of ~ is skew-symmetric and by Lemma 2.5 each 
symmetric map is in V. 

(b) Theorem 3.3 can also be proven by combining Theorem 2.1 with the 

description of the group of isometries of a 1-symmetric space given in [11]. 
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